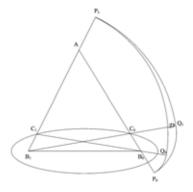
2006 年全国高中数学联合竞赛加试试卷

(考试时间: 上午10:00-12:00)

一、以 B_0 和 B_1 为焦点的椭圆与 AB_0B_1 的边 AB_i 交于 C_i (i=0,1). 在 AB_0 的延长线上

任取点 P_0 ,以 P_0 为圆心, P_0 为半径作圆弧 $\widehat{P_0Q_0}$ 交 P_1 P_0 的 延长线于 P_0 ;以 P_0 为圆心, P_0 为半径作圆弧 $\widehat{Q_0P_1}$ 交 P_0 的延长线于 P_1 ;以 P_0 为圆心, P_0 为半径作圆弧 $\widehat{P_1Q_0}$ 交 P_0 交 P_0 的延长线于 P_1 ;以 P_0 为圆心, P_0 为半径作圆弧 $\widehat{Q_0P_0}$,交 P_0 的延长线于 P_0 ;以 P_0 为圆心, P_0 为半径作圆弧 $\widehat{Q_0P_0}$,交



- (1) 点 P_0' 与点 P_0 重合,且圆弧 $\widehat{P_0Q_0}$ 与 $\widehat{P_0Q_1}$ 相内切于 P_0 ;
- (2) 四点 P_0, Q_0, Q_1, P_1 共圆。
- 二、已知无穷数列 $\{a_n\}$ 满足 $a_0=x,a_1=y$, $a_{n+1}=\frac{a_na_{n-1}+1}{a_n+a_{n-1}}$, $n=1,2,\cdots$.
 - (1) 对于怎样的实数 x = y , 总存在正整数 n_0 , 使当 $n \ge n_0$ 时 a_n 恒为常数 ?
 - (2) 求数列 $\{a_n\}$ 的通项公式.
- 三、解方程组

$$\begin{cases} x - y + z - w = 2, \\ x^{2} - y^{2} + z^{2} - w^{2} = 6, \\ x^{3} - y^{3} + z^{3} - w^{3} = 20, \\ x^{4} - y^{4} + z^{4} - w^{4} = 66. \end{cases}$$